Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Per- and polyfluoroalkyl substances (PFAS) have garnered attention as a pressing environmental issue due to their enduring presence and suspected adverse health effects. This study assessed the rejection or removal ef- ficacy of PFAS by commercial reverse osmosis (RO) and nanofiltration (NF) membranes and examined the im- pacts of surfactants, ion valency and solution temperature that are inadequately explored. The results reveal that the presence of cationic surfactants such as cetyltrimethylammonium bromide (CTAB) increased the rejection of two selected PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA), by binding with negatively charged PFAS and preventing them from passing through membrane pores via size exclusion, whereas the presence of anionic surfactants such as sodium dodecyl sulfate (SDS) increased the PFAS rejection because the increased electrostatic repulsion prevented PFAS from approaching and adsorbing onto the mem- brane surface. Moreover, aqueous ions (e.g., Al³⁺ and PO³−) with higher ion valency enabled higher rejection of PFOA and PFBA through increased effective molecular size and increased electronegativity. Finally, only high solution temperature at 45 ◦C significantly reduced PFAS rejection efficiency because of the thermally expanded membrane pores and thus the increased leakage of PFAS. Overall, this research provides valuable insights into the various factors impacting PFAS rejection in commercial RO and NF processes. These findings are crucial for developing efficient PFAS removal methods and optimizing existing treatment systems, thereby contributing significantly to the ongoing efforts to combat PFAS contamination.more » « less
-
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nanofiltration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water; however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4–10), salinity (0‐ to 1000‐mM NaCl), and organic matters (0–10 mM). We further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213–499 g·mol−1), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. Our results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. Practitioner PointsTwo commercial RO and NF membranes were both evaluated to remove 10 different PFAS.High transmembrane pressures facilitated permeate recovery and PFAS rejection by RO.Electrostatic repulsion and pore size exclusion are dominant rejection mechanisms for PFAS removal.pH, ionic strength, and organic matters affected PFAS rejection.Mechanisms of PFAS rejection with RO/NF membranes were explained by PCA analysis.more » « less
-
The paper presents a new methodology for short-term (5–25 min) benchtop tests to evaluate the effectiveness of magnetic treatment of feed water for reducing mineral scaling on a reverse osmosis (RO) membrane. Scale deposition is measured at a controlled level of salt supersaturation in water flowing through an RO unit in once-through mode. A magnetic water conditioner is tested in a transient flow regime when variations of the permeate flux along the flow path are insignificant. Scale formation under these conditions is governed by salt crystallization on the membrane surface. The proposed method was implemented to investigate the influence of magnetic treatment on gypsum deposition on RO membranes in supersaturated aqueous CaSO4/NaCl solutions. The effects of magnetic water treatment on scale formation under our experimental conditions were found to be statistically insignificant with a confidence level of 95%. However, this outcome should not be considered to negate the potential efficiency of magnetic water treatment in specific applications. The proposed methodology of testing under a controlled level of salt supersaturation will also be useful for evaluating the efficiency of other water treatment technologies.more » « less
-
Martin Bazant (Ed.)The collective motion of synthetic active colloids is an emerging area of research in soft matter physics and is important both as a platform for fundamental studies ranging from non-equilibrium statistical mechanics to the basic principles of self-organization, emergent phenomena, and assembly underlying life, as well as applications in biomedicine and metamaterials. The potentially transformative nature of the field over the next decade and beyond is a topic of critical research importance. Electrokinetic active colloids represent an extremely flexible platform for the investigation and modulation of collective behavior in active matter. Here, we review progress in the past five years in electrokinetic active systems and related topics in active matter with important fundamental research and applicative potential to be investigated using electrokinetic systems.more » « less
-
null (Ed.)Research on colloids is motivated by several factors. They can be used to answer fundamental questions related to the assembly of materials, and they have many potential applications in electronics, photonics, and life sciences. However, the rich variety of colloidal structures observed on the Earth can be influenced by the effects of gravity, which leads to particles settling and the motion of the surrounding fluid. To suppress the gravity effects, experiments on concentrated colloids of spherical and ellipsoidal fluorescent particles were carried out aboard the International Space Station. The particles were suspended in a decalin/tetralin mixture to match the particle refractive index. Confocal microscopy was used to visualize the particle behavior. The work was supported by the NSF CBET grants 1832260 and 1832291 and the NASA grant 80NSSC19K1655.more » « less
-
null (Ed.)Research on colloids is motivated by several factors. They can be used to answer fundamental questions related to the assembly of materials, and they have many potential applications in electronics, photonics, and life sciences. However, the rich variety of colloidal structures observed on the Earth can be influenced by the effects of gravity, which leads to particles settling and the motion of the surrounding fluid. To suppress the gravity effects, experiments on concentrated colloids of spherical and ellipsoidal fluorescent particles were carried out aboard the International Space Station. The particles were suspended in a decalin/tetralin mixture to match the particle refractive index. Confocal microscopy was used to visualize the particle behavior. The work was supported by the NSF CBET grants 1832260 and 1832291 and the NASA grant 80NSSC19K1655.more » « less
An official website of the United States government

Full Text Available